

Baicalein in Co-Crystal in Nanoemulsion for Targeted Colon Cancer Therapy: A Comprehensive Review

Amanpreet Kaur Dumda¹, Dr. Swati Rawat², Dr. Radhakrishnan³, M. Tigote¹

¹PhD Scholar, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India

² Institute of Pharmacy, Badlapur, Maharashtra, India

³ Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Sub Campus Dharashiv, Maharashtra, India

Abstract

Colon cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating the development of novel therapeutic strategies. Baicalein, a flavonoid derived from *Scutellaria baicalensis*, has demonstrated promising anticancer properties but suffers from poor bioavailability and limited aqueous solubility. This review examines the integration of co-crystallization technology with nanoemulsion delivery systems as an innovative approach to enhance baicalein's therapeutic efficacy against colon cancer. We comprehensively analyze the molecular mechanisms of baicalein's anticancer activity, the advantages of co-crystal formulations in improving pharmaceutical properties, and the role of nanoemulsions in targeted drug delivery. The synergistic combination of these technologies offers a promising platform for overcoming the pharmacokinetic limitations of baicalein while maximizing its therapeutic potential. This review synthesizes current research findings, discusses formulation strategies, and identifies future directions for translating these advanced drug delivery systems into clinical applications for colon cancer therapy.

Keywords: Baicalein, co-crystal, nanoemulsion, colon cancer, targeted therapy, drug delivery, bioavailability.

Article can be accessed online on: PEXACY International Journal of Pharmaceutical Science

DOI: 10.5281/zenodo.18185436

Corresponding Author- Amanpreet Kaur Dumda¹

Correspondence Email- amanpreetpalaya0909@gmail.com

Update: Received on 04/12/2024; Accepted; 12/01/2024, Published on; 29/12/2024

1. INTRODUCTION

Colorectal cancer (CRC) represents the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally, with approximately 1.9 million new cases and 935,000 deaths reported annually. Despite significant advances in surgical techniques, chemotherapy, and targeted therapies, the five-year survival rate for advanced-stage colon cancer remains disappointingly low at approximately 14%. The limitations of current therapeutic approaches, including severe systemic toxicity, drug resistance, and poor patient compliance, underscore the urgent need for innovative treatment strategies that can effectively target cancer cells while minimizing adverse effects on healthy tissues.

Natural compounds have emerged as promising candidates for cancer therapy due to their diverse biological activities, relatively low toxicity profiles, and potential for chemical modification. Among these, baicalein (5,6,7-trihydroxyflavone), a bioactive flavonoid isolated from the roots of *Scutellaria baicalensis* Georgi (Chinese skullcap), has attracted considerable attention for its potent anticancer properties (Singh et al., 2020). Extensive preclinical studies have demonstrated baicalein's ability to inhibit proliferation, induce apoptosis, suppress metastasis, and overcome drug resistance in various cancer cell lines, including colon cancer (Kim et al., 2013; Su et al., 2018).

However, the clinical translation of baicalein has been severely hampered by its poor pharmaceutical properties. Baicalein exhibits extremely low aqueous solubility (approximately 17.7 μ g/mL), poor oral bioavailability (less than 5%), rapid metabolism, and limited tissue distribution. These pharmacokinetic limitations result in subtherapeutic drug concentrations at tumor sites, necessitating high doses that may lead to systemic toxicity. Therefore, developing advanced drug delivery systems that can overcome these challenges while maintaining or enhancing baicalein's anticancer activity is crucial for its successful clinical application.

Recent advances in pharmaceutical nanotechnology have provided innovative solutions to address the delivery challenges of poorly soluble drugs. Among these approaches, the integration of co-crystallization technology with nanoemulsion-based delivery systems represents a particularly promising strategy. Co-crystallization can fundamentally improve the solid-state properties of baicalein, including solubility, dissolution rate, and stability, while nanoemulsions offer advantages in terms of enhanced bioavailability, controlled release, and targeted delivery to tumor tissues (Pi et al., 2018; Zhang et al., 2011).

This comprehensive review aims to critically evaluate the potential of combining co-crystal engineering with nanoemulsion technology for developing an effective baicalein delivery system for colon cancer therapy. We will examine the molecular mechanisms underlying baicalein's anticancer activity, discuss the principles and applications of co-crystallization in pharmaceutical development, analyze the advantages of nanoemulsion-based drug delivery systems, and explore how the synergistic integration of these technologies can overcome the current limitations of baicalein therapy.

2. BAICALEIN: PHARMACOLOGICAL PROPERTIES AND ANTICANCER MECHANISMS

2.1 Chemical Structure and Physicochemical Properties

Baicalein (5,6,7-trihydroxyflavone) is a flavone-type flavonoid with a molecular formula of $C_{15}H_{10}O_5$ and a molecular weight of 270.24 g/mol. The compound features three hydroxyl groups positioned at C-5, C-6, and C-7 of the A-ring, which are crucial for its biological activity. The planar structure of baicalein, characterized by its conjugated aromatic rings, contributes to its ability to interact with various cellular targets through hydrogen bonding, π - π stacking, and hydrophobic interactions (Hui, 2012).

From a physicochemical perspective, baicalein presents significant formulation challenges. It exhibits poor aqueous solubility (17.7 μ g/mL at 37°C), which is attributed to its highly crystalline nature and strong intermolecular hydrogen bonding in the solid state. The compound shows pH-dependent solubility, with increased dissolution in alkaline conditions due to ionization of the hydroxyl groups. Baicalein also demonstrates poor membrane permeability, classifying it as a BCS Class IV drug with both low solubility and low permeability.

2.2 Molecular Mechanisms of Anticancer Activity in Colon Cancer

2.2.1 Induction of Apoptosis

Baicalein potently induces apoptosis in colon cancer cells through both intrinsic and extrinsic pathways. Su et al. (2018) demonstrated that baicalein treatment of HCT116 colon cancer cells resulted in significant upregulation of DEPP (decidual protein induced by progesterone) and Gadd45a (growth arrest and DNA damage-inducible protein 45 alpha), leading to activation of mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK1/2. This cascade ultimately triggered mitochondrial dysfunction, cytochrome c release, and caspase-dependent apoptosis.

Furthermore, Taniguchi et al. (2008) revealed that baicalein overcomes TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance by upregulating death receptor 5 (DR5) expression through a ROS-dependent mechanism. This finding is particularly significant as TRAIL resistance is a major obstacle in colon cancer therapy.

2.2.2 Cell Cycle Arrest and Senescence Induction

Baicalein disrupts cell cycle progression in colon cancer cells, primarily inducing G0/G1 and G2/M phase arrest. Cai et al. (2023) identified a novel mechanism whereby baicalein modulates the miR-139-3p/CDK16 axis, leading to inhibition of cyclin-dependent kinase 16 (CDK16) and subsequent cell cycle arrest. Additionally, Dou et al. (2018) reported that baicalein induces cellular senescence in colon cancer cells through distinct mechanisms from apoptosis induction, with low concentrations primarily triggering senescence while higher concentrations predominantly induced apoptosis.

2.2.3 Inhibition of Metastasis and Invasion

Baicalein effectively suppresses the metastatic potential of colon cancer cells by targeting multiple steps in the invasion-metastasis cascade. Kim et al. (2014) demonstrated that baicalein inhibits platelet aggregation and reduces platelet-cancer cell interactions, thereby suppressing hematogenous metastasis. The compound also modulates epithelial-mesenchymal transition (EMT), reversing the mesenchymal phenotype and reducing invasive capacity.

2.2.4 Modulation of Key Signaling Pathways

Singh et al. (2020) comprehensively reviewed baicalein's effects on critical cancer-related signaling pathways. In colon cancer, baicalein significantly impacts the Wnt/β-catenin pathway, as demonstrated by Jia et al. (2019) who showed that baicalein induces apoptosis through the miR-217/DKK1/Wnt signaling axis. The compound also inhibits the PI3K/AKT/mTOR pathway and suppresses NF-κB activation, contributing to its multi-targeted anticancer effects.

2.3 Pharmacokinetics and Bioavailability Challenges

The therapeutic potential of baicalein is severely limited by its poor pharmacokinetic profile. Following oral administration, baicalein undergoes extensive first-pass metabolism, with glucuronidation and sulfation occurring primarily in the intestine and liver. Studies have reported oral bioavailability values ranging from 2.2% to 5.6%, with high inter-subject variability. The plasma half-life is relatively short (2-5 hours), necessitating frequent dosing to maintain therapeutic concentrations.

3. CO-CRYSTALLIZATION TECHNOLOGY: PRINCIPLES AND APPLICATIONS

3.1 Fundamentals of Pharmaceutical Co-Crystals

Pharmaceutical co-crystals represent a distinct class of crystalline materials composed of two or more molecular components in a defined stoichiometric ratio within the same crystal lattice. Unlike salts, co-crystals are formed between neutral molecules through non-ionic interactions, primarily hydrogen bonding, π - π stacking, and van der Waals forces. This approach offers unique advantages for modifying the physicochemical properties of active pharmaceutical ingredients without altering their molecular structure or pharmacological activity.

3.2 Co-Crystal Design Strategies for Baicalein

The rational design of baicalein co-crystals requires careful selection of coformers based on complementary hydrogen bonding patterns, safety profiles, and potential synergistic biological activity. Pi et al. (2018) successfully developed a baicalein-nicotinamide co-crystal that showed a 3.7-fold improvement in dissolution rate compared to pure baicalein. The co-crystal exhibited enhanced oral bioavailability (18.2% vs. 4.8%) in rat pharmacokinetic studies.

3.3 Methods for Co-Crystal Preparation

Various techniques have been employed for preparing pharmaceutical co-crystals, including solution crystallization, grinding methods, supercritical fluid technology, and hot melt

extrusion. Each method offers distinct advantages in terms of scalability, environmental impact, and control over crystal properties.

3.4 Characterization of Baicalein Co-Crystals

Comprehensive characterization is essential to confirm co-crystal formation and evaluate their properties. X-ray diffraction analysis provides structural information, while thermal analysis reveals melting behavior and stability. Spectroscopic techniques identify intermolecular interactions that distinguish co-crystals from physical mixtures. Hui (2012) reported detailed crystallographic analysis of baicalein, providing baseline data for comparison with co-crystal structures.

4. Nanoemulsion-Based Drug Delivery Systems

4.1 Nanoemulsion Fundamentals and Advantages

Nanoemulsions are thermodynamically unstable but kinetically stable colloidal dispersions consisting of oil and water phases stabilized by surfactants, with droplet sizes typically ranging from 20 to 200 nm. Their nanoscale dimensions confer unique properties including enhanced drug solubilization, improved bioavailability, protection from degradation, and potential for targeted delivery.

4.2 Formulation Components and Design Considerations

The rational design of baicalein-loaded nanoemulsions requires careful selection of excipients. Yin et al. (2017) developed biocompatible nanoemulsions using hemp oil as the oil phase, achieving enhanced oral bioavailability. Meng et al. (2016) successfully co-encapsulated paclitaxel and baicalein using optimized surfactant systems, achieving synergistic anticancer effects.

4.3 Preparation Methods and Scale-Up Considerations

Various methods including high-pressure homogenization, ultrasonication, and spontaneous emulsification have been employed for nanoemulsion preparation. Zhang et al. (2011) used high-pressure homogenization to prepare baicalein nanocrystals with enhanced bioavailability. Srivastava et al. (2021) used spontaneous emulsification to encapsulate baicalein in cinnamon essential oil nanoemulsions.

4.4 Characterization and Quality Control

Comprehensive characterization including particle size analysis, zeta potential measurement, morphological examination, and stability studies is essential for ensuring product quality and predicting *in vivo* performance.

5. INTEGRATION OF CO-CRYSTAL TECHNOLOGY WITH NANOEMULSIONS

5.1 Rationale for Combination Approach

The integration of co-crystallization with nanoemulsion technology leverages complementary advantages: co-crystallization enhances baicalein's intrinsic properties at the molecular level, while nanoemulsions provide a versatile delivery platform. This dual approach can achieve higher drug loading, improved stability, and enhanced therapeutic efficacy.

5.2 Formulation Strategies

Several strategies can incorporate baicalein co-crystals into nanoemulsions, including direct dispersion of pre-formed co-crystals, in situ co-crystallization within nanodroplets, and development of hybrid nanocarriers. Riadi et al. (2023) demonstrated this concept with baicalein-loaded lipid-polymer hybrid nanoparticles.

5.3 Optimization of Combined Systems

Development requires systematic optimization of co-crystal properties, formulation parameters, processing conditions, and drug release characteristics using Quality by Design approaches.

6. TARGETED DELIVERY STRATEGIES FOR COLON CANCER

6.1 Passive Targeting Mechanisms

Passive targeting exploits the enhanced permeability and retention (EPR) effect, pH-responsive systems utilizing the acidic tumor microenvironment, and redox-responsive delivery based on elevated glutathione levels in cancer cells.

6.2 Active Targeting Approaches

Surface modification with antibodies, peptides, small molecule ligands, or aptamers can achieve specific binding to receptors overexpressed on colon cancer cells.

6.3 Colon-Specific Delivery Systems

Site-specific delivery requires protection during upper GI transit using pH-dependent polymers, time-dependent systems, enzyme-triggered release, or microbiota-responsive mechanisms. Teng et al. (2024) demonstrated that baicalein can modulate β -glucuronidase activity, potentially influencing its own metabolism.

7. IN VITRO AND IN VIVO EVALUATION

7.1 In Vitro Characterization Studies

Comprehensive evaluation includes dissolution studies, cellular uptake and cytotoxicity assays, permeability assessment, and 3D tumor spheroid models. Kim et al. (2012) evaluated baicalein's antitumor actions in HT-29 cells, establishing baseline efficacy data. Ko et al. (2002) demonstrated baicalein's effects on intestinal physiology.

7.2 Animal Models and Pharmacokinetic Studies

In vivo evaluation provides critical data on pharmacokinetics, biodistribution, efficacy, and toxicity. Kim et al. (2013) utilized the AOM/DSS model of colitis-associated colon cancer, demonstrating baicalein's preventive effects. Zhang et al. (2011) compared different administration routes for baicalein nanocrystals.

7.3 Mechanistic Studies

Understanding enhanced efficacy mechanisms through molecular target validation, pharmacodynamic biomarkers, and combination therapy evaluation is crucial. Wang et al. (2019) demonstrated enhanced efficacy of ruthenium-baicalein complexes. Yadav et al. (2023) showed synergistic effects of paclitaxel-baicalein co-delivery.

8. CLINICAL TRANSLATION CONSIDERATIONS

8.1 Regulatory Requirements

Development faces unique challenges regarding co-crystal classification, nanomedicine guidelines, and quality control standards. The FDA and EMA provide frameworks for development, though specific guidance continues to evolve.

8.2 Manufacturing and Scale-Up

Translation requires process development using continuous manufacturing approaches, stability optimization potentially through lyophilization, and cost-benefit analysis considering improved outcomes versus increased complexity.

8.3 Clinical Development Strategy

Systematic clinical development should focus on Phase I safety and pharmacokinetics, biomarker-driven patient selection, and rational combination therapy protocols leveraging baicalein's multi-targeted effects.

9. CHALLENGES AND FUTURE PERSPECTIVES

9.1 Technical Challenges

Key challenges include maintaining co-crystal stability during processing, achieving reproducible scale-up, developing sensitive bioanalytical methods, and optimizing controlled release profiles.

9.2 Biological Considerations

Inter-individual variability in treatment response, development of resistance mechanisms, and immune system interactions require careful evaluation. Meher et al. (2023) demonstrated theranostic potential with functionalized carbon dots.

9.3 Future Research Directions

Emerging opportunities include smart stimuli-responsive systems, theranostic applications combining therapy with imaging, artificial intelligence for formulation optimization, microbiome modulation strategies, and combination with immunotherapy.

9.4 Emerging Technologies

Novel approaches including 3D printing for personalized medicine, advanced nanomaterials like those explored by Yang et al. (2022) using zeolitic imidazole frameworks, gene therapy integration, and extracellular vesicle-based delivery offer new possibilities.

10. CASE STUDIES AND RECENT ADVANCES

10.1 Successful Formulation Examples

Recent studies demonstrate feasibility and efficacy. Riadi et al. (2023) achieved 4.2-fold bioavailability enhancement with lipid-polymer hybrids. Tsai et al. (2012) developed tocol nanostructured lipid carriers with enhanced stability. Babu and Kannan (2012) created cinnamaldehyde cross-linked chitosan nanoparticles with synergistic activity.

10.2 Clinical Translation Examples

While baicalein co-crystal nanoemulsions await clinical trials, related technologies provide insights. FDA approval of sacubitril-valsartan co-crystal demonstrates regulatory acceptance. Several nanoemulsion oncology products have reached late-stage development.

10.3 Comparative Efficacy Studies

Direct comparisons provide valuable insights. Yin et al. (2017) demonstrated 3.5-fold bioavailability enhancement with hemp oil nanoemulsions. Kaushik (2016) showed improved stability with polysorbate 80 modification. Co-encapsulation strategies by Meng et al. (2016) and Yadav et al. (2023) demonstrated synergistic effects overcoming multidrug resistance.

11. SAFETY AND TOXICOLOGICAL CONSIDERATIONS

11.1 Safety Profile of Baicalein

Baicalein demonstrates favorable safety with $LD_{50} > 2000$ mg/kg orally in rodents. However, enhanced bioavailability from advanced formulations may alter safety profiles requiring dose adjustment. Comprehensive evaluation of organ-specific toxicity, particularly hepatotoxicity and nephrotoxicity, is essential.

11.2 Biocompatibility of Nanoemulsion Components

Surfactant selection is crucial to avoid hypersensitivity reactions. Natural oils offer biocompatibility advantages but may cause allergic reactions. Understanding component fate after drug release is important for long-term safety.

11.3 Immunological Considerations

Nanoemulsion-immune system interactions present opportunities and challenges. Repeated administration may trigger immunogenicity. Some formulations can activate complement. Baicalein's immunomodulatory properties may enhance anticancer immunity.

12. ECONOMIC AND COMMERCIAL CONSIDERATIONS

12.1 Market Analysis

The global colorectal cancer therapeutics market projected to reach \$13.8 billion by 2028 provides significant opportunity. Baicalein co-crystal nanoemulsions could capture market share through improved efficacy, reduced side effects, and combination therapy potential.

12.2 Intellectual Property Landscape

Strategic protection covering co-crystal composition, formulation, methods, and applications is essential. Freedom-to-operate analysis and regulatory exclusivities provide additional protection.

12.3 Cost-Benefit Analysis

Complex formulations increase development and production costs but improved efficacy may allow dose reduction. Healthcare economics should consider total treatment costs including hospitalization and quality of life.

13. MECHANISTIC INSIGHTS AND MOLECULAR TARGETS

13.1 Autophagy Modulation

Phan et al. (2020) revealed that inhibition of baicalein-induced autophagy amplifies apoptosis in colorectal cancer, suggesting autophagy serves as a survival mechanism. This finding has important implications for combination therapy design.

13.2 Senescence Pathways

Wang et al. (2018) demonstrated baicalein induces senescence via DEPP and ERK signaling distinct from apoptosis mechanisms. Bai et al. (2017) confirmed dose-dependent effects on cell cycle arrest and apoptosis *in vivo*.

13.3 Epigenetic Regulation

Li et al. (2024) identified CDKN2A suppression as a mechanism for baicalein's preventive effects. Multiple studies show miRNA modulation including miR-139-3p and miR-217 affecting key oncogenic pathways.

13.4 Metabolic Reprogramming

Baicalein affects cancer cell metabolism through multiple pathways. Effects on glucose metabolism, lipid synthesis, and amino acid utilization contribute to anticancer activity. Understanding metabolic effects guides combination strategies.

14. TRANSLATIONAL RESEARCH PRIORITIES

14.1 Biomarker Development

Identifying predictive biomarkers for patient selection is crucial. Molecular signatures predicting response, resistance markers, and pharmacodynamic indicators require validation in clinical samples.

14.2 Combination Therapy Optimization

Rational combinations with chemotherapy, targeted agents, and immunotherapy require systematic evaluation. Varukattu and Kannan (2012) demonstrated potential for chitosan nanoparticle delivery against HT-29 cells.

14.3 Personalized Medicine Approaches

Patient stratification based on tumor genetics, microbiome composition, and metabolic profiles may improve outcomes. Pharmacogenomic factors affecting baicalein metabolism require consideration.

14.4 Real-World Evidence Generation

Post-marketing surveillance, comparative effectiveness research, and patient-reported outcomes will guide clinical implementation.

15. CONCLUSIONS

The integration of co-crystallization technology with nanoemulsion-based delivery systems represents a transformative approach for enhancing baicalein's therapeutic potential against colon cancer. This comprehensive review has examined the multifaceted aspects from fundamental principles to clinical translation considerations.

Baicalein's diverse anticancer mechanisms—including apoptosis induction, cell cycle arrest, metastasis inhibition, and pathway modulation—provide a strong therapeutic foundation. However, poor pharmaceutical properties have limited clinical translation. The synergistic combination of co-crystallization to enhance intrinsic properties with nanoemulsion technology for improved delivery addresses these limitations comprehensively.

Recent advances demonstrate feasibility and efficacy of advanced baicalein formulations. Studies show significant improvements in bioavailability, anticancer activity, and potential for overcoming resistance. Success requires addressing formulation stability, manufacturing scalability, regulatory requirements, and clinical benefit demonstration.

Future research should optimize formulations through systematic approaches, develop smart responsive systems, explore rational combinations, and conduct well-designed clinical trials. The convergence of nanotechnology, crystal engineering, and cancer biology offers unprecedented opportunities for effective colon cancer therapy.

The interdisciplinary nature requires collaboration among pharmaceutical scientists, oncologists, material scientists, and regulatory experts. With continued development, baicalein co-crystal nanoemulsions could transition from promising preclinical candidates to valuable clinical therapeutics, offering new hope for colon cancer patients through more effective, targeted, and tolerable treatment options.

16. REFERENCES

Babu, V. N., & Kannan, S. (2012). Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis. *International Journal of Biological Macromolecules*, 51(5), 1103–1108.

Bai, H., Sa, Y., Lu, S., Bai, H., & Liu, P. (2017). Baicalin induces cell cycle arrest and apoptosis in colon cancer in vitro and in vivo. *Tumori*, 37, 208–217.

Cai, R., Zhou, Y. P., Li, Y., Zhang, J. J., & Hu, Z. W. (2023). Baicalin blocks colon cancer cell cycle via miR-139-3p/CDK16 axis. *The American Journal of Chinese Medicine*.

Dou, J., Wang, Z., Ma, L., Peng, B., Mao, K., Li, C., Su, M., Zhou, C., & Peng, G. (2018). Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. *Oncotarget*, 9, 20089–20102.

Hui, L. (2012). Crystal structure determination of baicalein from powder X-ray diffraction data.

Jia, Y., Chen, L., Guo, S., & Li, Y. (2019). Baicalin induces apoptosis via miR-217/DKK1/Wnt pathway in colon cancer. *Molecular Biology Reports*, 46, 1693–1700.

Kaushik, D. (2016). Baicalein loaded polysorbate 80 nanostructured lipid carriers offered enhanced stability and in vitro drug release. *Asian Journal of Pharmaceutics*, 10.

Kim, D. H., Hossain, M. A., Kang, Y., Jang, J., Lee, Y. J., Im, E., Yoon, J.-H., Kim, H. S., Chung, H., & Kim, N. (2013). Baicalein induces apoptosis in colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. *International Journal of Oncology*, 43(5), 1652–1658.

Kim, D. H., Sung, B., Chung, H., & Kim, N. (2014). Modulation of colitis-associated colon tumorigenesis by baicalein and betaine. *Journal of Cancer Prevention*, 19, 153–160.

Kim, S. D., Lee, Y. J., Baik, J. S., Han, J. Y., Lee, C., Heo, K., Park, Y. S., Kim, J. S., Ji, H., Park, S. I., Rhee, M., & Yang, K. (2014). Baicalein inhibits platelet aggregation and suppresses colon metastasis. *Biochemical Pharmacology*, 92(2), 251–265.

Kim, S. J., Kim, H. J., Kim, H., Lee, S. H., Cho, S. D., Choi, C., Nam, J. S., & Jung, J. Y. (2012). Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. *Molecular Medicine Reports*, 6(6), 1443–1449.

Ko, W., Law, V., Yip, W., Yue, G., Lau, C., Chen, Z., & Huang, Y. (2002). Stimulation of chloride secretion by baicalein in isolated rat distal colon. *American Journal of Physiology-Gastrointestinal and Liver Physiology*, 282(3), G508–G518.

Li, G. G., Chu, X. F., Xing, Y. M., Xue, X., Ihtisham, B., Liang, X. F., Xu, J. X., Mi, Y., & Zheng, P. (2024). Baicalin prevents colon cancer by suppressing CDKN2A protein expression. *Chinese Journal of Integrative Medicine*.

Meher, M. K., Unnikrishnan, B. S., Tripathi, D. K., Packirisamy, G., & Poluri, K. (2023). Baicalin functionalized PEI-heparin carbon dots as cancer theranostic agent. *International Journal of Biological Macromolecules*, 126846.

Meng, L., Xia, X., Yang, Y.-F., Ye, J., Dong, W.-J., Ma, P., Jin, Y., & Liu, Y. (2016). Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. *International Journal of Pharmaceutics*, 513(1–2), 8–16.

Phan, T., Nguyen, V., Salazar, M. A., Wong, P., Diamond, D., Yim, J., & Melstrom, L. (2020). Inhibition of autophagy amplifies baicalein-induced apoptosis in colorectal cancer. *Molecular Therapy Oncolytics*, 19, 1–7.

Pi, J., Wang, S., Li, W., Kebebe, D., Zhang, Y., Zhang, B., Qi, D., Guo, P., Li, N., & Liu, Z. (2018). A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. *Asian Journal of Pharmaceutical Sciences*, 14, 154–164.

Riadi, Y., Afzal, O., Geesi, M. H., Almalki, W., & Singh, T. (2023). Baicalin-loaded lipid–polymer hybrid nanoparticles inhibiting the proliferation of human colon cancer: Pharmacokinetics and in vivo evaluation. *Polymers*, 15.

Singh, S., Meena, A., & Luqman, S. (2020). Baicalin mediated regulation of key signaling pathways in cancer. *Pharmacological Research*, 105387.

Srivastava, S., Singh, S., Saraf, S., Chourasia, M. K., Mathew, J., & Pandey, A. C. (2021). Encapsulation of baicalein in cinnamon essential oil nanoemulsion for enhanced anticancer efficacy. *BioNanoScience*, 11, 1049–1060.

Su, M., Zhou, Y., Rao, X., Yang, H., Zhuang, X., Ke, X., Peng, G., Zhou, C.-L., Shen, B., & Dou, J. (2018). Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. *International Journal of Oncology*, 53(2), 750–760.

Taniguchi, H., Yoshida, T., Horinaka, M., Yasuda, T., Goda, A., Konishi, M., Wakada, M., Kataoka, K., Yoshikawa, T., & Sakai, T. (2008). Baicalein overcomes TRAIL resistance via DR5 upregulation in cancer cells. *Cancer Research*, 68(21), 8918–8927.

Teng, X., Wu, B., Liang, Z., Zhang, L., Yang, M., Liu, Z., Liang, Q., & Wang, C. (2024). Baicalein ameliorates irinotecan-induced diarrhea by targeting *E. coli* and β -glucuronidase. *Cell Biology and Toxicology*, 40.

Tsai, M., Wu, P.-C., Huang, Y.-B., Chang, J.-S., Lin, C.-L., Tsai, Y., & Fang, J.-Y. (2012). Baicalein loaded in tocol nanostructured lipid carriers for enhanced stability and brain targeting. *International Journal of Pharmaceutics*, 423(2), 461–470.

Varukattu, N., & Kannan, S. (2012). Chitosan nanoparticles as a potential delivery for baicalein against colon adenocarcinoma (HT 29). *Annals of Oncology*, 23.

Wang, Y., Bian, L., Chakraborty, T., Ghosh, T., Chanda, P., & Roy, S. (2019). Chemotherapeutic efficacy of ruthenium-baicalein complex in colon cancer. *International Journal of Biological Sciences*, 15, 1052–1071.

Wang, Z., Ma, L., Su, M., Zhou, Y., Mao, K., Li, C., Peng, G., Zhou, C., Shen, B., & Dou, J. (2018). Baicalin induces senescence via DEPP and MAPK/ERK signaling in colon cancer. *Cell Death & Disease*, 9.

Yadav, P., Saklani, R., Tiwari, A., Verma, S., Chauhan, D., Yadav, P., Rana, R., Kalleti, N., Gayen, J., Wahajuddin, Rath, S., Mugale, M., Mitra, K., & Chourasia, M. K. (2023). Ratiometric co-delivery of paclitaxel and baicalein loaded nanoemulsion for enhancement of breast cancer treatment. *International Journal of Pharmaceutics*, 123209.

Yang, J., Chen, A., He, X., & Lu, S. (2022). Fabrication of baicalein-encapsulated zeolitic imidazole framework as a novel nanocomposite wound closure material to persuade pH-responsive healing efficacy. *International Wound Journal*.

Yin, J., Xiang, C., Wang, P., Yin, Y., & Hou, Y. (2017). Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. *International Journal of Nanomedicine*, 12, 2923–2931.

Zhang, J., Lv, H., Jiang, K., & Gao, Y. (2011). Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. *International Journal of Pharmaceutics*, 420(1), 180–188.

Zhang, J., Teng, C., Li, C., & He, W. (2020). Deliver anti-inflammatory drug baicalein to macrophages by using a crystallization strategy. *Frontiers in Chemistry*, 8