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Abstract 

Cancer remains a leading cause of death globally, driving the need for innovative therapeutic 

approaches. Nanotechnology and nanomedicine have revolutionized modern cancer therapy by 

enabling precise diagnosis, targeted drug delivery, and effective treatment monitoring. This 

review highlights key nanomaterials, including liposomes, polymeric nanoparticles, 

dendrimers, quantum dots, carbon nanotubes, and metal-based nanoparticles, that enhance the 

efficacy of chemotherapeutic agents while reducing systemic toxicity. The integration of 

diagnostic and therapeutic functions into single platforms, known as theranostics, allows for 

real-time tracking of treatment responses and personalized medicine. Advanced therapies such 

as photothermal therapy, magnetic hyperthermia, and gene therapy facilitated by 

nanotechnology are also discussed. Despite significant advancements, challenges such as 

nanoparticle toxicity, optimal biodistribution, immune system interactions, and regulatory 

issues remain. Future directions emphasize the importance of interdisciplinary collaboration, 

innovative design, and comprehensive clinical evaluations to fully realize the potential of 

nanomedicine in cancer treatment. Addressing these challenges will pave the way for more 

effective and personalized cancer therapies. 
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1. INTRODUCTION 

 Cancer remains a leading cause of morbidity 

and mortality worldwide. Traditional 

treatment modalities—surgery, chemotherapy, 

radiotherapy—have undoubtedly extended 

patient survival but come with significant 

limitations including toxicity, drug resistance, 

and relapse (Reijneveld et al., 2022; Kerr et 

al., 2022). The heterogeneity of tumors and 

http://pexacy.com/
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complexity of their microenvironments 

necessitate novel strategies that can overcome 

these challenges and deliver therapeutic agents 

precisely and effectively. 

Nanotechnology, an interdisciplinary field that 

exploits the unique properties of materials at 

the nanoscale, has emerged as a powerful tool 

in oncology. By manipulating matter at 

dimensions roughly 1–100 nm, nanomedicine 

allows for improved drug solubility, 

controlled release, targeted delivery, and 

minimized systemic toxicity (Lohse & 

Murphy, 2012; Germain et al., 2020; 

Gonzalez-Valdivieso et al., 2021). Over the 

past two decades, a substantial body of 

research has demonstrated that nanoparticle-

based drug carriers can enhance the 

therapeutic index of anti-cancer drugs and 

reduce adverse effects (Narayana, 2014; 

Chatterjee & Kumar, 2022). 

This review aims to provide a comprehensive 

overview of nanomedicine in cancer therapy, 

focusing on nanocarriers such as liposomes, 

polymeric nanoparticles, metallic 

nanoparticles, carbon-based nanomaterials, 

and nanoemulsions. We discuss the 

fundamentals of cancer biology relevant to 

drug delivery, the rationale for nanomedicine, 

strategies for targeting tumors, combination 

therapies, preclinical evaluation, clinical 

translation, and future directions. By 

synthesizing insights from a diverse set of 

references, this article presents a thorough 

examination of the state-of-the-art and 

potential pathways forward in applying 

nanotechnology to combat cancer more 

effectively. 

2. FOUNDATIONS OF CANCER 

BIOLOGY AND CONVENTIONAL 

TREATMENT MODALITIES 

2.1 Cancer Hallmarks and Mechanisms of 

Disease Progression 

Cancer involves the dysregulation of cell 

growth, differentiation, and death. 

Tumorigenesis is driven by genetic and 

epigenetic alterations that confer cells with 

hallmarks such as self-sufficiency in growth 

signals, resistance to cell death, sustained 

angiogenesis, tissue invasion, and immune 

evasion (Fraga et al., 2005; Maitland & 

Schilsky, 2011). As tumors progress, they 

become increasingly heterogeneous, both 

genetically and phenotypically, making 

uniform treatment response challenging (Gao, 

2016; Schaaf et al., 2018). 

The complexity and adaptability of cancer 

highlight the need for therapies that can adapt 

to the evolving landscape of the tumor. This is 

where nanomedicine holds promise—
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nanocarriers can be engineered to target 

multiple pathways simultaneously, deliver 

combinations of drugs, and modulate the 

tumor microenvironment. 

2.2 Conventional Therapies: Surgery, 

Chemotherapy, Radiotherapy, and 

Immunotherapy 

Traditional cancer treatments have made 

remarkable strides over the last century. 

Surgery remains a mainstay for solid tumors, 

removing the primary mass. Chemotherapy 

and radiotherapy, developed mid-20th 

century, help kill rapidly dividing cells 

(Krown et al., 2004). However, these 

modalities often result in significant collateral 

damage to healthy tissues. 

In recent decades, immunotherapy has 

revolutionized oncology by harnessing the 

patient’s immune system to recognize and 

eliminate cancer cells (Adverse Events of 

Immune Checkpoint Inhibitors, 2023). While 

immunotherapies, including immune 

checkpoint inhibitors, have shown outstanding 

results, they are not universally effective and 

can still induce serious adverse events. 

2.3 Limitations and Toxicities of 

Conventional Approaches 

Chemotherapy's systemic toxicity is a major 

limitation. Many cytotoxic drugs have narrow 

therapeutic windows, causing severe side 

effects like neuropathy, mucositis, 

cardiotoxicity, and myelosuppression (Kim, 

S.-D. et al., 2022; Reijneveld et al., 2022). 

Radiotherapy may result in radiation-induced 

secondary malignancies and damage to 

surrounding healthy tissue (Chen et al., 2022). 

Immunotherapies can lead to immune-related 

adverse events affecting multiple organ 

systems. 

These shortcomings underscore the need for 

more selective, targeted, and patient-friendly 

strategies. Nanomedicines offer opportunities 

to improve the delivery of chemotherapeutic 

agents, radiosensitizers, and 

immunomodulators, thereby enhancing 

efficacy while reducing toxicity. 

3. THE RATIONALE FOR 

NANOMEDICINE IN CANCER 

THERAPY 

3.1 EPR Effect and Enhanced Drug 

Delivery 

One of the early rationales for using 

nanoparticles in cancer therapy is the 

enhanced permeability and retention (EPR) 

effect (Maeda et al., 2000). Tumor vasculature 

is often leaky, allowing nanoparticles to 

extravasate into the tumor interstitium. Poor 

lymphatic drainage in tumors leads to 
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retention of these nanoparticles, resulting in 

higher local drug concentrations compared to 

normal tissues. 

Although the EPR effect is widely cited, its 

reliability varies across different tumor types 

and patient populations (Kobayashi et al., 

2014). Factors such as tumor size, vascular 

density, and microenvironment significantly 

influence nanoparticle accumulation. 

Nevertheless, EPR-driven passive targeting 

remains a foundational concept in 

nanomedicine. 

3.2 Improving Pharmacokinetics and 

Reducing Systemic Toxicities 

Nanocarriers can modulate a drug’s 

pharmacokinetic profile by controlling its 

release rate, shielding it from premature 

degradation, and altering its distribution. 

PEGylation, for instance, provides a stealth 

corona around nanoparticles, minimizing 

clearance by the reticuloendothelial system 

(RES) and prolonging circulation time (Harris 

& Chess, 2003; Dirisala et al., 2020). By 

delivering drugs in a more controlled and 

localized manner, nanoparticles can reduce 

off-target effects and systemic toxicity, thus 

improving the therapeutic index (Gref et al., 

1994; Omidifar et al., 2021). 

3.3 Targeted and Personalized Therapies 

through Nanotechnology 

In an era of personalized medicine, 

nanocarriers can be tailored with ligands (e.g., 

antibodies, peptides, aptamers) that recognize 

cancer-specific receptors, enabling active 

targeting. Such strategies significantly 

increase the fraction of drug delivered to the 

tumor while sparing healthy tissues (Wang et 

al., 2010; Bazak et al., 2015). Personalized 

nanomedicines can incorporate biomarkers or 

imaging agents for theranostic approaches, 

allowing clinicians to monitor drug delivery, 

release, and therapeutic response in real-time 

(Raju et al., 2015; Hu, Aryal & Zhang, 2010). 

4. NANOPARTICLE PLATFORMS FOR 

DRUG DELIVERY AND IMAGING 

Nanoparticles come in various compositions 

and architectures, each offering unique 

properties for drug loading, release kinetics, 

stability, biocompatibility, and targeting. 

Below we highlight the major classes: 

4.1 Liposomes 

Liposomes are spherical vesicles composed of 

one or more phospholipid bilayers. They were 

among the first nanocarriers approved for 

clinical use, enhancing the delivery of 

chemotherapeutics like doxorubicin (Kola & 

Landis, 2004; Krown et al., 2004). Liposomes 
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can incorporate both hydrophilic and 

hydrophobic drugs, reduce toxicity, and 

improve pharmacokinetics. Stealth liposomes, 

coated with PEG, have prolonged circulation 

and are widely used in clinical practice (Al-

Jamal & Kostarelos, 2011; Olusanya et al., 

2018). 

4.2 Polymeric Nanoparticles 

Polymeric nanoparticles, often formed from 

materials like PLGA or chitosan, provide 

controlled drug release and biodegradation 

(Danhier et al., 2012). They can be engineered 

for pH-responsive or enzymatic degradation, 

ensuring site-specific drug release in the 

tumor microenvironment (Wen et al., 2016; 

Dhakshinamurthy & Misra, 2017). 

4.3 Metallic Nanoparticles (Gold, Iron 

Oxide) 

Metallic nanoparticles offer unique optical, 

thermal, and magnetic properties. Gold 

nanoparticles (AuNPs) can be used for 

photothermal therapy, where laser irradiation 

heats the nanoparticles, destroying cancer 

cells (Ghosh et al., 2008; Ali et al., 2019; 

Kim, K.Y., 2007). Iron oxide nanoparticles 

can enable magnetic hyperthermia or serve as 

MRI contrast agents (Dennis & Ivkov, 2013; 

Soetaert et al., 2020). Both gold and iron 

oxide nanoparticles are being studied 

extensively for imaging-guided therapies 

(Zhang et al., 2010; Wang & Zhang, 2022). 

4.4 Carbon-based Nanomaterials 

(Graphene, Carbon Dots, Carbon 

Nanotubes) 

Carbonaceous nanomaterials, such as 

graphene oxide, carbon dots, and carbon 

nanotubes, present high surface areas for drug 

loading and have distinctive optical properties 

that can be harnessed for bioimaging (Peng et 

al., 2017; Tang et al., 2022). Graphene-based 

materials may also support photothermal 

therapy or serve as carriers for gene delivery 

(Roy et al., 2019; Jampilek & Kralova, 2021). 

4.5 Quantum Dots and Hybrid Systems 

Quantum dots are semiconductor 

nanoparticles with size-tunable emission 

spectra, beneficial for tumor imaging 

(Derivery et al., 2017; Mangeolle et al., 2019). 

Coupling imaging agents with therapeutic 

modalities creates hybrid nanoplatforms for 

theranostics, enabling simultaneous diagnosis 

and treatment (Zhou et al., 2017). 

4.6 Micelles and Nanoemulsions 

Polymeric micelles and nanoemulsions 

represent other classes of colloidal carriers. 

Micelles form from amphiphilic block 

copolymers, while nanoemulsions are 
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kinetically stable mixtures of two immiscible 

liquids stabilized by surfactants. Both are 

promising for increasing drug solubility and 

bioavailability (Ragelle et al., 2012; Hu & 

Zhang, 2012). 

5. NANOEMULSIONS IN CANCER 

THERAPY 

5.1 Definition and Advantages of 

Nanoemulsions 

Nanoemulsions are submicron-sized 

emulsions, typically 20–200 nm in diameter, 

composed of oil, water, and surfactants. Their 

small droplet size leads to high stability, 

transparency, and large surface area for drug 

loading (Sánchez-López et al., 2019; Kumar et 

al., 2022; Mohite et al., 2023). Nanoemulsions 

can enhance the solubility of hydrophobic 

drugs, protect them from degradation, and 

improve their biodistribution. 

5.2 Formulation Strategies and Stability 

Considerations 

The preparation of nanoemulsions often 

involves high-energy methods (high-pressure 

homogenization, ultrasonication) or low-

energy methods (phase inversion) (Ragelle et 

al., 2012; Maeda et al., 2000). Selecting 

appropriate surfactants and co-surfactants is 

crucial for maintaining droplet stability and 

preventing coalescence. Stability can be 

assessed through parameters like droplet size, 

PDI, and zeta potential (El-Naggar et al., 

2022; Bhavana Valamla et al., 2024). 

5.3 Case Studies: Nanoemulsion-Loaded 

Anti-Cancer Drugs and Herbals 

Several studies have reported using 

nanoemulsions to deliver chemotherapeutics 

and even herbal compounds that possess anti-

inflammatory and anti-tumor properties. 

Nanoemulsion carriers have been shown to 

improve oral bioavailability, prolong 

circulation time, and enhance tumor 

accumulation (Sánchez-López et al., 2019; 

Mohite et al., 2023). For instance, co-delivery 

of curcumin and other natural products in 

nanoemulsions has displayed synergistic 

anticancer efficacy in vitro and in vivo. 

5.4 Clinical Trials and Future Directions in 

Nanoemulsion Research 

While nanoemulsions hold great promise, 

clinical translation is still limited. Ongoing 

clinical trials are evaluating the safety and 

efficacy of nanoemulsion-based formulations 

for various cancers (Superficial Basal Cell 

Cancer’s Photodynamic Therapy Trials, 

NCT02367547; Joint Authority for Päijät-

Häme Social and Health Care, 2019). Future 

directions include engineering multifunctional 

nanoemulsions with imaging agents, stimuli-
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responsive release, and targeted ligands for 

precision oncology (Kumar et al., 2022). 

6. ACTIVE AND PASSIVE TARGETING 

STRATEGIES 

6.1 Passive Targeting: Exploiting the EPR 

Effect 

Passive targeting leverages the EPR effect to 

accumulate nanoparticles in tumors. However, 

the EPR effect is not uniform across all tumor 

types. Thus, while passive targeting can 

improve drug localization compared to free 

drugs, it does not guarantee efficient 

penetration into tumor cores (Sindhwani et al., 

2020). 

6.2 Active Targeting: Ligands, Antibodies, 

and Aptamers 

Active targeting involves functionalizing 

nanoparticles with moieties that bind 

specifically to cancer cell surface receptors 

(Landen et al., 2005; Jain et al., 2015). 

Common targets include folate receptors, 

transferrin receptors, or HER2. By selectively 

binding tumor cells, active targeting reduces 

off-target distribution and enhances 

therapeutic efficacy (Zhang et al., 2010; Liang 

et al., 2011). 

6.3 Stimuli-Responsive Nanocarriers (pH, 

Redox, Temperature, Enzymes) 

Stimuli-responsive nanocarriers release their 

payload under specific conditions found in the 

tumor microenvironment—such as acidic pH, 

elevated reductive potential, or the presence of 

specific enzymes (Zhou et al., 2018; Zhao et 

al., 2016). This fine-tuned release mechanism 

further improves the therapeutic index and 

reduces systemic toxicity. 

6.4 Overcoming Tumor Microenvironment 

Barriers 

The tumor microenvironment (TME) includes 

dense extracellular matrices, abnormal 

vasculature, and immunosuppressive cells that 

hinder nanoparticle penetration. Strategies to 

modify the TME—via mechanical disruption 

or immunomodulation—enhance nanoparticle 

distribution and efficacy (Gao, 2016; Tang et 

al., 2013; Tsoi et al., 2016). 

7. COMBINATION THERAPIES AND 

SYNERGISTIC EFFECTS 

7.1 Nanoparticles Co-delivering Multiple 

Drugs 

Co-delivery of multiple drugs with distinct 

mechanisms can produce synergistic anti-

tumor effects and combat resistance (Hu & 

Zhang, 2012; Kim, K.Y., 2007). Nanocarriers 

can encapsulate hydrophobic and hydrophilic 

drugs simultaneously, achieving ratio-
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controlled delivery and synchronized release 

(Liang et al., 2011; Dhar et al., 2008). 

7.2 Integration with Immunotherapy and 

Gene Therapy 

Nanomedicine can enhance immunotherapy 

by improving the delivery of cytokines, 

checkpoint inhibitors, or nucleic acids that 

modulate the immune system (Korangath et 

al., 2020; Nascimento et al., 2021). Gene 

therapy approaches, including siRNA and 

CRISPR-Cas9, benefit from nanoparticle-

mediated delivery to ensure stability, cell 

uptake, and efficient gene silencing or editing 

(Yang et al., 2018; Peng et al., 2017). 

7.3 Herbal Extracts and Phytochemicals as 

Adjuncts to Nanomedicine 

Herbal antioxidants and phytochemicals—like 

curcumin, resveratrol, and gingerol—have 

shown potential anti-cancer and anti-

inflammatory effects (Omidifar et al., 2021; 

Omrani et al., 2016). Incorporating these 

compounds into nanoparticle formulations 

enhances their solubility, stability, and 

bioavailability (Zhang et al., 2010; Hu, Aryal 

& Zhang, 2010). Such combinations can 

minimize side effects of synthetic drugs and 

add complementary mechanisms of action 

(Kim, S.-D. et al., 2022). 

7.4 Overcoming Drug Resistance and 

Enhancing Therapeutic Outcomes 

Cancer cells often develop resistance to 

single-agent chemotherapy. Combination 

therapies delivered by nanoparticles can 

simultaneously attack multiple pathways, 

reduce the likelihood of resistance, and 

prolong patient survival (Hosseinkazemi et al., 

2022; Guorgui et al., 2018). By tuning 

nanoparticle properties, researchers can 

achieve spatiotemporal control over drug 

release, ensuring effective doses at the tumor 

site over an extended period. 

8. IN VITRO AND IN VIVO 

EVALUATION OF NANOMEDICINES 

8.1 Pharmacokinetic and 

Pharmacodynamic Considerations 

Preclinical evaluation involves measuring how 

nanomedicines disperse, metabolize, and clear 

from the body. Pharmacokinetics (PK) and 

pharmacodynamics (PD) inform the dosing 

regimens and predict clinical performance 

(Elsayed et al., 2024; Ibrahim et al., 2023). 

Advanced imaging and modeling approaches 

help understand nanoparticle fate and 

distribution. 

8.2 Cellular Uptake, Intracellular 

Trafficking, and Endosomal Escape 
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Effective intracellular delivery requires 

nanoparticles to overcome multiple biological 

barriers. After endocytosis, nanoparticles are 

often trapped in endosomes. Escape into the 

cytosol is crucial for delivering siRNA or 

other biologics (Derivery et al., 2017; Shah et 

al., 2012). Engineering nanoparticles with 

membrane-disruptive features or stimuli-

responsive release can facilitate endosomal 

escape. 

8.3 Toxicity Assessment and Safety 

Profiling (In Vitro, In Vivo) 

Nanoparticle toxicity can manifest as 

oxidative stress, inflammation, or immune 

activation (Schaaf et al., 2018; Miernicki et 

al., 2019). Therefore, extensive safety studies 

are required, including in vitro cytotoxicity 

assays, hemolysis tests, and in vivo 

biodistribution and histopathological 

examinations. The goal is to ensure that the 

benefits of nanomedicines outweigh potential 

risks. 

8.4 Regulatory Challenges and 

Standardization 

Harmonized guidelines for evaluating the 

safety, efficacy, and quality of nanomedicines 

remain an area under development. Regulators 

demand rigorous characterization of 

nanoparticle size, shape, surface chemistry, 

and protein corona formation (Caracciolo et 

al., 2019; Lu et al., 2019). Collaborative 

efforts among academia, industry, and 

regulatory bodies aim to establish consensus 

standards. 

9. CLINICAL TRANSLATION AND 

CASE STUDIES 

9.1 Approved Nanomedicines and Their 

Clinical Performance 

Several nanoparticle-based therapeutics are 

now approved for clinical use. Liposomal 

doxorubicin (Doxil®), albumin-bound 

paclitaxel (Abraxane®), and iron oxide 

nanoparticles for imaging have reached 

patients (Mross et al., 2004; Parveen & Sahoo, 

2008). These successes validate the concept of 

nanomedicine but also highlight challenges in 

translating novel platforms into the clinic. 

9.2 Lessons Learned from Clinical Trials 

Clinical trials often reveal discrepancies 

between promising preclinical data and 

modest clinical outcomes (Chen et al., 2022; 

Adverse Events of Immune Checkpoint 

Inhibitors, 2023). Issues include nanoparticle 

stability in human plasma, inter-patient 

variability, and difficulties in scaling up 

production. Continuous refinement of 

nanoparticle design, patient stratification, and 
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combination strategies can improve clinical 

success rates. 

9.3 Personalized Nanomedicine and 

Biomarker-Guided Therapies 

The future of oncology lies in personalization. 

Nanomedicines can incorporate biomarkers 

that report on drug release or tumor response, 

enabling dynamic treatment adjustments 

(Caracciolo et al., 2019; Capriotti et al., 2014). 

Artificial intelligence and big data analytics 

can assist in identifying which patients are 

most likely to benefit from a particular 

nanomedicine. 

10. THE TUMOR 

MICROENVIRONMENT AND NANO-

IMMUNE INTERACTIONS 

10.1 Role of the Tumor Microenvironment 

in Nanoparticle Distribution 

The TME includes fibroblasts, immune cells, 

extracellular matrix, and abnormal 

vasculature. Understanding nanoparticle-TME 

interactions is crucial for improving 

penetration and retention. Strategies to 

modulate the TME, such as normalizing blood 

vessels or targeting tumor-associated 

macrophages, enhance nanoparticle efficacy 

(Gao, 2016; Zanganeh et al., 2016). 

10.2 Immune Modulation by Nanocarriers 

Nanoparticles can act as immune modulators, 

enhancing anti-tumor immunity or reducing 

immune-related adverse effects (Nogueira et 

al., 2018; Korangath et al., 2020). They can 

deliver immunostimulatory agents (e.g., 

cytokines, adjuvants) directly to antigen-

presenting cells, improving T-cell activation 

and tumor infiltration. 

10.3 Nanoparticle-Protein Corona and Its 

Impact on Efficacy 

Once administered, nanoparticles rapidly 

adsorb biomolecules (proteins, lipids) forming 

a "protein corona" that influences their 

biodistribution and cell uptake (Mahmoudi et 

al., 2023; Miceli et al., 2017). Tailoring 

surface chemistry and pre-coating strategies to 

control the protein corona can improve 

targeting and reduce off-target effects (Kopac, 

2021; Capriotti et al., 2014). 

11. CHALLENGES IN NANOMEDICINE 

TRANSLATION 

11.1 Scale-Up, Manufacturing, and Quality 

Control 

Producing nanoparticles at large scale with 

consistent quality is a non-trivial task. Slight 

variations in raw materials or processing 

conditions can affect particle size, stability, 

and encapsulation efficiency (Lungu et al., 

2019; Bae et al., 2011). Good Manufacturing 
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Practice (GMP) protocols and robust quality 

control are essential for clinical translation. 

11.2 Stability, Shelf-Life, and Storage 

Requirements 

Many nanocarriers require specific storage 

conditions to maintain stability. Ensuring long 

shelf-life and simple handling procedures is 

necessary for widespread clinical adoption 

(Valencia et al., 2013; Gref et al., 2000). 

11.3 Economic and Ethical Considerations 

Nanomedicine development is capital-

intensive. Balancing innovation with 

affordability and equitable access to these 

advanced therapies poses ethical and 

economic challenges (Mangeolle et al., 2019; 

Omidifar et al., 2021). Global partnerships and 

governmental incentives may help overcome 

these barriers. 

12. FUTURE DIRECTIONS AND 

EMERGING TRENDS 

12.1 Next-Generation Materials and Smart 

Nanocarriers 

Emerging nanomaterials incorporate advanced 

functionalities, such as shape-shifting carriers, 

multi-stimuli responsiveness, and self-

assembling nanocomposites (Ragelle et al., 

2012; Tang et al., 2013). These advanced 

systems aim to improve tumor penetration, 

reduce clearance, and adapt to dynamic tumor 

conditions. 

12.2 Artificial Intelligence and Machine 

Learning in Nanomedicine Design 

AI-driven tools can predict nanoparticle 

properties, optimize formulations, and even 

design personalized treatment regimens based 

on patient omics data (Dirisala et al., 2020; 

Capriotti et al., 2014). Machine learning 

models analyzing large datasets from imaging 

and clinical trials can accelerate the discovery 

of novel nanomedicines. 

12.3 Theranostics and Integrated 

Treatment Platforms 

Theranostic nanoparticles combine therapy 

and diagnostics into a single platform, offering 

real-time feedback on drug release and tumor 

response (Anani et al., 2021; Wen et al., 

2016). This integration empowers clinicians to 

make timely adjustments to treatment plans, 

improving patient outcomes. 

12.4 Regulatory Harmonization and Global 

Collaboration 

The complexity of nanomedicines calls for 

international collaboration among scientists, 

clinicians, industry stakeholders, and 

regulators (Miernicki et al., 2019; Tsoi et al., 

2016). Global consortiums can harmonize 
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testing protocols, share data, and establish 

standardized frameworks to expedite the safe 

and effective development of 

nanotherapeutics. 

13. CONCLUSION 

Nanotechnology has opened new avenues for 

cancer therapy, offering strategies to improve 

drug delivery, enhance targeting specificity, 

reduce systemic toxicity, and enable 

personalized and combination treatments. 

While significant progress has been made, 

challenges remain in achieving uniform 

clinical success, scaling up production, 

ensuring safety, and navigating regulatory 

landscapes. 

By continuing to refine nanoparticle design, 

leverage stimuli-responsive features, harness 

combination strategies, and integrate artificial 

intelligence, nanomedicine stands poised to 

revolutionize oncology. As research matures 

and collaborative efforts intensify, 

nanotechnological innovations may transform 

cancer from a lethal disease into a manageable 

condition, greatly improving patient quality of 

life and survival. 
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